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We consider a generalization of classical Bernstein operators obtained by
replacing the binomial coefficients with general ones satisfying a suitable recursive
relation. We study the uniform convergence of these operators together with some
quantitative estimates and regularity properties. Finally, in some particular cases,
we investigate the behavior of the iterates. � 1996 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARY RESULTS

This paper takes its motivation from the recent development of the study
of connections between approximation processes and evolution problems,
through semigroup theory. In this frame, we refer to the papers of
Altomare [1, 2, 4], Felbecker [10, 11] and Campiti [7, 8], where these
connections have been successively deepened and the class of evolution
equations whose solutions can be approximated by constructive approxi-
mation processes has been consistently enlarged. In some cases, the intro-
duction of new types of operators became necessary (see, e.g., [3], [4] and
[6]). For a unified treatment of this subject see [5].

Our operators are defined in a quite elementary way, but, at the same
time, they apply to approximate the solutions of a wide class of evolution
problems. In this paper we restrict ourselves to examine the main proper-
ties of the approximation process; connections with semigroup theory will
be explored in [9].
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Inspired by the definition of the classical Bernstein polynomials, we
replace the binomial coefficients by general ones satisfying similar recursive
properties. Actually, we replace the sequences of constant value 1 at the
sides of Pascal's triangle with arbitrary ones and define the coefficients of
our operators with the same rule of binomial coefficients.

The sequences of linear operators obtained in this way need not to
converge in general to the identity operator; indeed, we shall prove the
convergence to a multiplication operator by an analytic function depending
on the sequences at the sides of Pascal's triangle.

We obtain a decomposition of the classical Bernstein polynomials as sum
of elementary operators; our operators will be linear combinations of these
last ones.

Qualitative properties and regularity results are stated. Among these, we
point out a Voronovskaja-type formula where the second order derivative
is perturbed by a first order term depending again on the fixed sequences.
This yields the link with semigroup theory and evolution problems
(explored in [9]).

We begin to fix some notation. We shall consider polynomial type
operators having the form

An ( f )(x) := :
n

k=0

:n, k xk(1&x)n&k f \k
n+ , f # C([0, 1]), x # [0, 1]. (1.1)

We shall assume that the coefficients satisfy the following recursive
formulas

:n+1, k=:n, k+:n, k&1 , k=1, ..., n (1.2)

:n, 0=*n , :n, n=\n , (1.3)

where (*n)n # N and (\n)n # N are fixed sequences of real numbers.
Obviously, if *m=\m=1 for every m=1, ..., n, we have :n, k=( n

k) for
every k=0, ..., n. Hence, in this case the operator An coincides with the
classical n th Bernstein operator Bn : C([0, 1] � C([0, 1]) defined by

Bn ( f )(x)= :
n

k=0
\n

k+ xk(1&x)n&k f \k
n+ , f # C([0, 1]). (1.4)

It is easy to recognize that condition An (1)=1 is satisfied for every n�1
only by Bernstein operators; nevertheless, if we require An (1)=1 only for
a fixed integer n�1 we have more possibilities.

We observe that the coefficients and consequently the operators An are
determined uniquely by the two sequences *=(*n)n # N and \=(\n)n # N. If
necessary, we shall write An, *, \ to indicate the operator An corresponding
to the sequences * and \.
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Remarks. 1. It is easy to see, using (1.1)�(1.3), that An, *, \ depends
linearly on the sequences *=(*n)n # N and \=(\n)n # N .

2. We also observe that if the sequences !=(!n)n # N , '=('n)n # N ,
_=(_n)n # N and {=({n)n # N satisfy the following conditions

!n�'n , _n�{n

for every n�1, then we have

An, !, _�An, ', { (1.5)

for every n # N (i.e., An, !, _ ( f )�An, ', { ( f ) for every positive f # C([0, 1])).
In particular, if M is an upper bound for the sequences *=(*n)n # N and

\=(\n)n # N), i.e., *n�M and \n�M, then An, *, \�M } Bn (see (1.4)).

By the preceding remarks, it will be useful to consider the m th left (right,
respectively) elementary operators which are associated to the sequences
*=($ m

n )n # N and \=0 (*=0 and \=($m
n )n # N , respectively). We shall

denote by Lm, n (Rm, n , respectively) these operators and by lm, n, k (rm, n, k ,
respectively) their coefficients satisfying (1.2) and (1.3). By using the
recursive relations (1.2), it is easy to check the following formulas for the
coefficients lm, n, k and rm, n, k

lm, n, k={
0, if n<m; n=m, k�1; n>m, k=0;

(1.6)

n>m, k�n&m+1;

1, if n=m, k=0;

\n&m&1
k&1 + , if n>m, 1�k�n&m;

and

rm, n, k={
0, if n<m; n=m, k�n&1; n>m,

(1.7)

k�m&1; n>m, k=n;

1, if n=m, k=n;

\n&m&1
k&m + , if n>m, m�k�n&1;

for every m�1, n�1 and k=0, ..., n. As a consequence, we obtain

Lm, n ( f )(x)= :
n&m

k=1
\n&m&1

k&1 + xk(1&x)n&k f \k
n+ , if m<n,

Ln, n ( f )(x)=(1&x)nf (0), (1.8)
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and

Rm, n ( f )(x)= :
n&1

k=m \n&m&1
k&m + xk(1&x)n&k f \k

n+ , if m<n,

Rn, n ( f )(x)=xnf (1) (1.9)

for every f # C([0, 1]).
By recalling that

Bn (1)=1, Bn (id)=id, Bn (id 2)=
n&1

n
id 2+

1
n

id (1.10)

(where id(x)=x for every x # [0, 1]), we easily obtain

Lm, n (1)(x)={x(1&x)m,
(1&x)n,

if n>m
if n=m,

(1.11)

Rm, n (1)(x)={(1&x)xm,
xn,

if n>m,
if n=m,

Lm, n (id)(x)={x(1&x)m \1
n

+
n&m&1

n
x+ , if n>m,

0, if n=m,

(1.12)

Rm, n (id)(x)={(1&x)xm \m
n

+
n&m&1

n
x+ , if n>m,

xn, if n=m,

Lm, n (id 2)(x)

={
x(1&x)m \ 1

n2+3
n&m&1

n2 x+
(n&m&1)(n&m&2)

n2 x2+ ,

(1.13)
if n>m,

0, if n=m,

Rm, n (id 2)(x)

={
(1&x)xm \m2

n2 +(1+2m)
n&m&1

n2 x+
(n&m&1)(n&m&2)

n2 x2+ ,

if n>m,

xn, if n=m.
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Finally, we point out the following decomposition

An= :
n

m=1

*m Lm, n+ :
n

m=1

\m Rm, n , (1.14)

which is a consequence of Remark 1. In particular, Bn=�n
m=1 Lm, n+

�n
m=1 Rm, n .

2. GENERAL CONVERGES PROPERTIES

In this section we fix two arbitrary sequences *=(*n)n # N and
\=(\n)n # N of real numbers and investigate the convergence of the
sequence (An)n # N .

Since for every f # C([0, 1]) we have

An ( f )(0)=*n f (0), An ( f )(1)=\n f (1), (2.1)

the convergence of (An)n # N implies that of the sequences (*n)n # N and
(\n)n # N .

So, we assume that (*n)n # N and (\n)n # N converge and put

*� := lim
n � �

*n , \� := lim
n � �

\n . (2.2)

Now, representation (1.14) and formulas (1.11) yield

An (1)(x)= :
n&1

m=1

(*m x(1&x)m+\m xm(1&x))+*n (1&x)n+\n xn; (2.3)

this suggests that we consider the power series

:
�

m=1

*m (1&x)m and :
�

m=1

\m xm

which have radii of convergence greater than or equal to 1 because of the
boundedness of (*n)n # N and (\n)n # N . As a consequence, we can define the
functions

l(x) :={
*� , if x=0,

:
�

m=1

*m x(1&x)m, if 0<x�1,

r(x) :={ :
�

m=1

\m xm(1&x), if 0�x<1, (2.4)

\� , if x=1,
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which turn out to be continuous on [0,1] by the convergence of (*n)n # N

and (\n)n # N .
Observe that |l(x)|�(1&x) } supm�1 |*m| and |r(x)|�x } supm�1 |\m | .
Moreover, putting am=*m&*m&1 and bm=\m&\m&1 for every m�1
with the convention *0=\0=0, we have

*m= :
m

k=1

ak , \m= :
m

k=1

bk

and l(x)=��
m=1 am (1&x)m, r(x)=��

m=1 bm xm.

The function

w :=l+r (2.5)

plays a central role in the study of the sequence (An)n # N ; in order to
estimate its degree of convergence, we observe that the limit operator
depends also on the asymptotic behavior of the sequences (*n)n # N and
(\n)n # N . As a consequence, our estimate will involve the modulus of
continuity

|( f, $) :=sup[ | f (x)& f (y)| | x, y # [0, 1], |x&y|�$], (2.6)

and also a ``remainder term''

r(n) := sup
m�n

max[ |*m&*n | , |\m&\n |]. (2.7)

We define, for simplicity

s(n) :=max
m�n

[ |*m | , |\m |] .

Theorem 2.1. For every f # C([0, 1]) and x # [0, 1]

|An ( f )(x)& f (x) An (1)(x)|�(1+x(1&x)) s(n) | \ f,
1

- n+ (2.9)

and therefore

|An ( f )(x)&w(x) } f (x)|�(1+x(1&x)) s(n) | \ f,
1

- n+
+((1&x)n+xn) r(n) | f (x)| . (2.10)
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In particular, the following uniform estimate holds

&An ( f )&w } f &�
5
4

s(n) | \ f,
1

- n++r(n) & f & . (2.11)

Proof. First, we observe that, for every f # C([0, 1]) and x # [0, 1], by
(2.8) and Remark 2 in Section 1, we have

|An ( f )(x)|� :
n

k=0

|:n, k | xk(1&x)n&k } f \k
n+}�s(n) Bn ( | f | )(x).

For every $>0, by using the well-known inequality | f (y)& f (x)|�
(1+(1�$2)(x&y)2) |( f, $), we obtain

|An ( f )(x)& f (x) An (1)(x)|

� :
n

k=0

|:n, k | xk(1&x)n&k } f \k
n+& f (x) }

�s(n) |( f, $) :
n

k=0 \
n
k+ xk(1&x)n&k \1+

1
$2 \x&

k
n+

2

+
=\1+

1
$2

x(1&x)
n + s(n) |( f, $).

Therefore, by taking $=1�- n , (2.9) immediately follows.
On the other hand, by (2.3) and (2.4), for every x # ]0, 1[,

|An (1)(x)&w(x)|

= |*n (1&x)n+\n xn& :
�

m=n

*m x(1&x)m& :
�

m=n

\m xm(1&x) }
= } (1&x)n :

�

m=0

(*n&*n+m) x(1&x)m+xn :
�

m=0

(\n&\n+m) xm(1&x) }
�((1&x)n+xn) r(n) (1)

and the same inequality obviously holds if x=0 or x=1.
Hence, we have obtained

|An ( f )(x)&w(x) f (x)|

�|An ( f )(x)& f (x) An (1)(x)|+| f (x) An (1)(x)&w(x) f (x)|

�(1+x(1&x)) s(n) | \ f,
1

- n++((1&x)n+xn) r(n) | f (x)| ,

and this completes the proof. K
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By the preliminary remarks and Theorem 2.1, we can completely
describe the convergence of (An)n # N .

Theorem 2.2. The sequence (An)n # N converges strongly on C([0, 1]) if
and only if the sequences (*n)n # N and (\n)n # N converge.

In this case, if w denotes the function defined by (2.5), we have

lim
n � �

An ( f )=w } f uniformly on [0, 1] (2.12)

for every f # C([0, 1]).

Now we consider some concrete examples.

Examples. 1. In the case of Bernstein operators, we have r(n)=0 and
s(n)=1 for every n�1 and therefore (2.9) reduces to the well-known result
of Lorentz [12, p. 20]:

|Bn ( f )(x)& f (x)|�(1+x(1&x)) |( f, n&1�2). (2.13)

2. We can decompose the classical n-th Bernstein operator into the
sum of its left and right part. Namely, for every n�1, we define the n th left
Bernstein operator Bl

n corresponding to the sequences *k=1 and \k=0 for
every k�1 and similarly, the n th right Bernstein operator Br

n by consider-
ing the sequences *k=0 and \k=1 for every k�1.

It is easy to show that

Bl
n ( f )(x)= :

n&1

k=0
\n&1

k + xk(1&x)n&k f \k
n+ (2.14)

and

Br
n ( f )(x)= :

n

k=1
\n&1

k&1+ xk(1&x)n&k f \k
n+ . (2.15)

In this case l(x)=1&x and r(x)=0 for the left Bernstein operators and
l(x)=0 and r(x)=x for the right Bernstein operators.

Hence, by Theorem 2.2, we get, for every f # C([0, 1])

lim
n � �

Bl
n ( f )(x)=(1&x) f (x) uniformly in x # [0, 1] (2.16)
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and

lim
n � �

Br
n ( f )(x)=xf (x) uniformly in x # [0, 1]. (2.17)

Finally, Theorem 2.1 yields the following quantitative estimates:

&Bl
n ( f )&(1&id) f &�

5
4

| \ f,
1

- n+ , (2.18)

and

&Br
n ( f )&id f &�

5
4

| \ f,
1

- n+ . (2.19)

3. For every n�1 and m�1, we can also define the m-truncation
Bm, n of the nth Bernstein operator as follows

Bm, n := :
m

j=1

Lj, n+Rj, n . (2.20)

By (1.8) and (1.9) it follows Bm, n=Bn if m�n while, if m<n,

Bm, n ( f )(x)= :
m

j=1
\ :

n& j

k=1
\n& j&1

k&1 + xk(1&x)n&k f \k
n+

+ :
n&1

k= j \
n& j&1

k& j + xk(1&x)n&k f \k
n++ .

Since

l(x)=(1&x)&(1&x)m+1, r(x)=x&xm+1,

we have

lim
n � �

Bm, n ( f )(x)

=(1&(1&x)m+1&xm+1) f (x) uniformly in x # [0, 1] (2.21)

and

&Bm, n ( f )&(1&(1&id )m+1&id m+1) } f &�
5
4

| \ f,
1

- n+ . (2.22)
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4. A situation of particular interest can be obtained by considering
linear combinations of Bernstein operators and a finite number of elemen-
tary operators. This is equivalent to assume that the sequences (*n)n # N and
(\n)n # N are definitively constant. If *n=* and \n=\ for every n�p, we
have (see (2.4) and (2.5))

w(x)=*(1&x)+\x+ :
p&1

m=1

((*m&*) x(1&x)m+(\m&\)(1&x)xm) (2.23)

and hence w is a polynomial of degree at most p. Obviously, for the
associated sequence (An)n # N defined by (1.1), for every n�p we have
r(n)=0 and consequently by (2.11)

&An ( f )&w } f &�
5
4

max
m�p

[ |*m | , |\m |] | \ f,
1

- n+ . (2.24)

Conversely, observe that every polynomial of degree at most p can be
written as in (2.23) from which we can obtain the corresponding
definitively constant sequences (*n)n # N and (\n)n # N .

As regards to the sequences of elementary operators (Lm, n)n # N and
(Rm, n)n # N defined by (1.8) and (1.9), we explicitly observe that

lim
n � �

Lm, n ( f )(x)=x(1&x)m f (x) uniformly in x # [0, 1] (2.25)

and

lim
n � �

Rm, n ( f )(x)=xm(1&x) f (x) uniformly in x # [0, 1] (2.26)

for every f # C([0, 1]). Moreover, we can state the following more precise
quantitative estimates.

Proposition 2.3. For every m=1, ..., n&2 and f # C([0, 1]), we have

9
8

1
m+1

| \ f,
1

- n&m&1+ , if m�- n&3�4&
1
2

,

&Lm, n ( f )&. } f &�{9
8

1
m+1

| \ f,
m

n&m&1+ , if m�- n&3�4&
1
2

,

(2.27)
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where .(x) :=x(1&x)m and

9
8

1
m+1

| \ f,
1

- n&m&1+ , if m�- n&3�4&
1
2

,

&Rm, n ( f )&� } f &�{9
8

1
m+1

| \ f,
m

n&m&1+ , if m�- n&3�4&
1
2

,

(2.28)

where �(x) :=xm(1&x).

Proof. By (1.8) and (2.13), we obtain, for every f # C([0, 1]),

|Lm, n ( f )(x)&x(1&x)m f (x)|

�x(1&x)m \ |Bn&m&1( f )(x)& f (x)|

+ :
n&m&1

h=0
\n&m&1

h + xh(1&x)n&m&1&h } f \h+1
n +& f \ h

n&m&1+}+
�x(1&x)m \(1+x(1&x)) | \ f,

1

- n&m&1++| \ f,
n

n&m&1++ .

At this point, we observe that 1�- n&m&1�m�(n&m&1) exactly
when m�- n&3�4& 1

2. Hence, by the above inequalities,

|Lm, n ( f )(x)&x(1&x)m f (x)|

x(1&x)m (2+x(1&x)) | \ f,
1

- n&m&1+ , if m�- n&3�4& 1
2 ,

�{x(1&x)m (2+x(1&x)) | \ f,
m

n&m&1+ , if m�- n&3�4& 1
2 ,

and this yields (2.27) since x(1&x)m�1�(2(m+1)) when x # [0, 1].
The proof of (2.28) is analogous. K

We conclude this section by examining the connection between w(x) and
the coefficients :n, k , with k�n around x. For, we write

An ( f )(x)= :
n

k=0

bn, k \n
k+ xk(1&x)n&k f \k

n+ , (2.29)
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where

bn, k :=:n, k \n
k+

&1

, k=0, ..., n. (2.30)

By representation (1.14) it follows

bn, k= :
n

m=1

(*m bl
m, n, k+\m br

m, n, k), (2.31)

where bl
m, n, k :=lm, n, k ( n

k)&1 and br
m, n, k :=rm, n, k ( n

k)&1. By using formulas
(1.6) and (1.7), we obtain

bl
m, n, k={

k
n

`
m

j=1

1&(k+ j&1)�n
1& j�n

, m<n,

(2.32)
1, m=n, k=0,

0, m>n or (m=n and k>0),

br
m, n, k={\

1&
k
n+ `

m

j=1

k& j+1
n& j

, m<n,

(2.33)
1, m=n, k=n,

0, m>n or (m=n and k<n).

It is also useful to consider the continuous piecewise affine function bn

satisfying the conditions

bn \k
n+=bn, k , k=0, ..., n. (2.34)

So we can write An (1)=Bn (bn) for every n # N. Moreover, comparing
(2.30) with (1.2) and (1.3), we obtain

bn (0)=*n , bn (1)=\n ,

bn+1 \ k
n+1+=\1&

k
n+1+ bn \k

n++
k

n+1
bn \k&1

n + , k=1, ..., n. (2.35)

Theorem 2.4. The sequence (bn)n # N converges uniformly to w.

Proof. As a first step, we show that limn � �, k�n � x bn, k=w(x)
uniformly in x # [0, 1], that is, for every =>0 there exist $>0 and & # N
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such that |bn, k&w(x)|<= whenever n>&, |k�n&x|<$, Indeed, formulas
(2.32) and (2.33) imply

lim
k�n � x
n � �

bl
m, n, k=x(1&x)m uniformly in x # [0, 1] (1)

and

lim
k�n � x
n � �

br
m, n, k=xm(1&x) uniformly in x # [0, 1]. (2)

We write

An= :
n

m=1

((*m&*�)Lm, n+(\m&\�)Rm, n)+*� Bl
n+\� Br

n . (3)

If we denote bl
n, k and br

n, k the coefficients of Bl
n and Br

n , respectively, a
direct computation shows that

bl
n, k=1&

k
n

and br
n, k=

k
n

, k=0, ..., n. (4)

Moreover, if we put *m=\m=1 in (2.31), we obtain

:
n

m=1

(bl
m, n, k+br

m, n, k)=1. (5)

By (3) and (4) we can restrict ourselves to the case *�=\�=0. For
every &<n, we have

|bn, k&w(x)|� } :
&

m=1

(*m bl
m, n, k+\m br

m, n, k)

& :
&

m=1

(*m x(1&x)m+\m xm(1&x)) }
+ } :

n

m=&+1

(*m bl
m, n, k+\m br

m, n, k) }
+ } :

�

m=&+1

(*m x(1&x)m+\m xm(1&x)) } .

The second and the third term in the last inequality can be estimated
with supm�& [ |*n | , |\n |] (use (5) for the second term), and they converge
to 0 if & � �. The first term converges to 0, & being fixed, uniformly in
x # [0, 1] if n � � and k�n � x by (1) and (2).
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At this point, we can show the uniform convergence of the sequence
(bn)n # N . If =>0, by the first part, there exist $>0 and & # N such that
|bn, k&w(x)|<= whenever n>&, |k�n&x|<$. We can assume 1�$<& and
|w(x)&w(y)|<= whenever x, y # [0, 1], |x&y|<$. Let n>&; if x # [0, 1],
there exists k=0, ..., n&1 such that k�n�x�(k+1)�n; moreover, we have

bn (x)=tbn \k
n++(1&t)bn \k+1

n +
for some 0�t�1. Hence

|bn (x)&w(x)|�t } bn \k
n+&w(x) }+(1&t) } bn \k+1

n +&w(x) }�=

and this completes the proof. K

The preceding result allows us to derive some qualitative properties of
the function w by studying the sequence (bn)n # N .

Proposition 2.5. The following properties hold:

(1) If (*n)n # N and (\n)n # N are both increasing, then (bn)n # N is an
increasing sequence of convex functions and w is convex.

(2) If (*n)n # N and (\n)n # N are both decreasing, then (bn)n # N is a
decreasing sequence of concave functions and w is concave.

(3) If (*n)n # N is increasing and (\n)n # N is decreasing and if *1�\1 ,
then w and every bn are decreasing.

(4) If (*n)n # N is decreasing and (\n)n # N is increasing and if *1�\1 ,
then w and every bn are decreasing.

(5) If *n=\n for every n�1, then, for every n�1 and x # [0, 1],
bn (1&x)=bn (x) and consequently w(1&x)=w(x).

Proof. Let n�1 and, for every i=1, ..., n, denote by rn, i the segment of
bn joining the points ((i&1)�n, bn, i&1) and (i�n, bn, i), and by mn, i=
n(bn, i&bn, i&1) its angular coefficient.

We observe that bn is convex (respectively, concave) if and only if
mn, 1� } } } �mn, n (respectively, mn, 1� } } } �mn, n) and moreover bn is
increasing (respectively, decreasing) if and only if all mn, i , i=1, ..., n, are
positive (respectively, negative).

We also point out that, for every n�1 and i=2, ..., n, the value of
mn+1, i is always between the values mn, i&1 and mn, i since, by (2.35), the
endpoints of rn+1, i are interior points of rn, i&1 and rn, i .

At this point, the proof proceeds by induction on n�1.
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Under the assumption (1), if bn is convex, by the inequalities *n�*n+1

and \n�\n+1 , and by the above argument, we obtain

mn+1, 1�mn, 1�mn+1, 2�mn, 2� } } } �mn+1, n�mn, n�mn+1, n+1;

therefore the function bn+1 is also convex. Moreover, bn�bn+1 since each
affine restriction of bn+1 is a secant of the convex function bn .

The proof of property (2) is analogous.
The sequence (*n)n # N is decreasing if and only if (mn, 1)n # N is increasing

and similarly (\n)n # N is increasing if and only if (mn, n)n # N is increasing for
every n�1.

Since mn+1, i is a value between mn, i&1 and mn, i for every i=2, ..., n,
property (3) will follow by induction on n�1 provided that m1, 1�0, i.e.,
*1�\1 . The proof of property (4) is similar.

Finally, if *n=\n for every n�1, then :n, n&k=:n, k for every k=0, ..., n
and consequently, by (2.30), bn, n&k=bn, k . Hence, property (5) follows by
the definition of bn . K

Remark. Observe that in general there is no continuous function g
satisfying g(k�n)=bn, k for all n # N and k=0, ..., n. In fact, in this case we
should have bn=g for every n�1 and therefore *n=g(0) and \n=g(1) for
every n�1. It follows that the only possibility is that the function
w(x)=g(0)(1&x)+g(1)x is affine on [0,1].

3. REGULARITY RESULTS

Our purpose is to improve estimates (2.10) and (2.11) when f satisfies
suitable regularity properties. We shall prove also a Voronovskaja-type for-
mula for the operators An .

We keep the same notation of the preceding section. We assume that the
sequences (*n)n # N and (\n)n # N converge and define

&*& :=sup
n # N

|*n | , &\& :=sup
n # N

|\n | and M :=max[&*&, &\&].

The following two lemmas play a central role throughout this section.

Lemma 3.1. The following properties hold:

(i) &id } An (1)&An (id)&�
3M

n
.
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(ii) lim
n � �

n(An (id)(x)&xAn (1)(x))={x(1&x) w$(x),
0,

if 0<x<1,
if x=0 or x=1,

uniformly on [0, 1].

Proof. Using the representation (1.14) and formulas (1.11), (1.12) and
(1.13), we directly obtain

x } An (1)(x)&An (id)(x)

= :
n&1

m=1
\*m x(1&x)m \m+1

n
x&

1
n+

+\m xm(1&x) \m+1
n

(x&1)+
1
n++

+*n x(1&x)n+\n xn(1&x). (1)

First we prove that, for 0<x<1,

x(1&x) w$(x)=& :
�

m=1

(*m x(1&x)m ((m+1)x&1)

+\m xm(1&x)((m+1)(x&1)+1)) (2)

and that the second member can be continuously extended at the end-
points.

For, we put a(x) :=��
m=1 *m x2(m+1)(1&x)m and observe that

limx � 0 a(x)=*� . In fact

|a(x)&*�(1&x2)|= } :
�

m=1

(*m&*�)(m+1) x2(1&x)m }
� :

&

m=1

|*m&*� | (m+1) x2(1&x)m

+ :
�

m=&+1

|*m&*�| (m+1) x2(1&x)m

for all & # N, where the second term is less than supm�& |*m&*� | and the
first term, with a fixed &, converges to 0 as x � 0.

Moreover

a(x)= :
�

m=1

*m x2 \&
d

dx+ (1&x)m+1
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= :
�

m=1

*m \\&
d

dx+ (x2(1&x)m+1)+2x(1&x)m+1+
=\&

d
dx+ (x(1&x) l(x))+2(1&x) l(x)=l(x)&x(1&x) l $(x)

so that limx � 0 x(1&x) l $(x)=0.
In the same way, defining b(x) :=��

m=1 \m (1&x)2 (m+1)xm, we
obtain b(x)=r(x)+x(1&x) )r$(x), limx � 1 x(1&x) r$(x)=0, whence (2) is
proved and limx � 0, 1 x(1&x) w$(x)=0.

Now, we note that

} :
�

m=n

*m x2(m+1)(1&x)m }� sup
m�n

|*m | x2 :
�

m=1

(m+1)(1&x)m

= sup
m�n

|*m | x2 } d
dx

:
�

m=1

(1&x)m+1 }
= sup

m�n
|*m | (1&x2)�M(1&x2) (3)

and similarly

} :
�

m=n

\m (1&x)2 (m+1)xm }� sup
m�n

|\m | x2�Mx2. (4)

Since

:
n&1

m=1

( |*m | x(1&x)m+|\m | xm(1&x))�M,

sup
0�x�1

|x(1&x)n+xn(1&x)|�
1
n

(5)

and, by (1),

|x } An (1)(x)&An (id)(x)|

� :
n&1

m=1
\ |*m | x(1&x)m m+1

n
x+|\m | xm(1&x)

m+1
n

(1&x)+
+

1
n

:
n&1

m=1

( |*m | x(1&x)m+|\m | xm(1&x))

+|*n| x(1&x)n+|\n | xn(1&x),

(i) easily follows from (3), (4) and (5).
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To prove (ii) we first assume that *�=\�=0. Then, for 0<x<1, by
(1) and (2)

n(An (id)(x)&xAn (1)(x))&x(1&x) w$(x)

= :
�

m=n

(*m x(1&x)m ((m+1)x&1)+\m xm(1&x)((m+1)(x&1)+1))

&n*n x(1&x)n&n\n xn(1&x).

Using (3), (4) and (5) and the continuity of the function x(1&x) w$(x)
in [0,1] one easily obtains

sup
0�x�1

|n(An (id)(x)&xAn (1)(x))&x(1&x) w$(x)|�3 sup
m�n

[ |*m | , |\m |]

which yields the uniform convergence.
The general case reduces to the previous one by writing

An= :
n

m=1

(*m&*�)Lm, n+ :
n

m=1

(\m&\�)Rm, n+*� Bl
n+\� Br

n (6)

and noticing that (ii) immediately follows by direct computation for the
operators Bl

n and Br
n . K

Lemma 3.2. The equality

lim
n � �

nAn ((id&x } 1)2)(x)=x(1&x) w(x)

holds uniformly in x # [0, 1].

Proof. We write An=Cn+Dn , where Cn :=�n
m=1 *m Lm, n and Dn :=

�n
m=1 \m Rm, n . Using again formulas (1.11), (1.12) and (1.13), we obtain

Cn ((id&x } 1)2)(x)=
1
n2 :

n&1

m=1

*m x(1&x)m ((m2+3m&n+2)x2

+(n&3m&3)x+1)+*n x2(1&x)n.

For each k # N the power series ��
m=1 mkxk(1&x)m are bounded in

[0, 1]; hence, if *�=0, an argument similar to that of the proof of
Lemma 3.1 yields

lim
n � �

nCn ((id&x } 1)2)(x)=x(1&x) l(x)
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uniformly in x # [0, 1]. Since the statement is obviously true for the
operator Bl

n , the general case *� # R can be obtained by using (6) as in the
proof of Lemma 3.1.

In the same way, limn � � nDn ((id&x } 1)2)(x)=x(1&x) r(x) uniformly
in x # [0, 1], and this completes the proof. K

Proposition 3.3. If f # C1([0, 1]), then

&An ( f )&An (1) } f &�3M \ & f $&
n

+
1

4 - n
| \f $,

1

- n++ . (3.1)

Proof. Using Lagrange's theorem

f \k
n+& f (x)=\k

n
&x+ f $(x)+\k

n
&x+ ( f $(!)& f $(x)),

we get, for all $>0,

|An ( f )(x)& f (x) } An (1)(x)|

� } :
n

k=0

:n, k xk(1&x)n&k \k
n

&x+ f $(x) }
+M|( f $, $) :

n

k=0
\n

k+ xk(1&x)n&k } kn&x } \1+
1
$ } kn&x }+ ;

choosing $=1�- n, the second term in the preceding sum can be estimated
with 3M�(4 - n) |( f $, 1�- n) in a straightforward way (see, e.g., [12,
p. 21]). As regard the first term we have |An (id)(x)&x } An (1)(x)| | f $(x)|
�(3M�n) & f $& by Lemma 3.1(i). K

Remark. If f # C1([0, 1]), we have, for every x # [0, 1],

|An ( f )(x)&w(x) } f (x)|

�|An ( f )(x)& f (x) } An (1)(x)|+| f (x)| |An (1)(x)&w(x)| (3.2)

and therefore, by (3.1) and (1) in the proof of Theorem 2.1,

&An ( f )&w } f &�3M \& f $&
n

+
1

4 - n
| \ f $,

1

- n+++r(n) & f & . (3.3)

In this case, the term r(n) & f & cannot be omitted. For example, if f =1
and *n � 0, then &An ( f )&w } f &�|An ( f )(0)|=|*n|=r(n) & f & .
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However, estimate (3.3) can be improved in every compact [a, b]/]0, 1[
by replacing r(n) & f & with r(n) & f & supa�x�b(xn+(1&x)n).

Now, we prove the announced Voronovskaja-type formula.

Theorem 3.4. Let f # C([0, 1]) be two times differentiable at x # [0, 1].
Then

lim
n � �

n(An ( f )(x)&An (1)(x) f (x))

={
1
2x(1&x) w(x) f "(x)+x(1&x) w$(x) f $(x),
0,

if 0<x<1,
if x=0, 1.

(3.4)

Moreover, if f # C2([0, 1]), then (3.4) holds uniformly on [0, 1].

Proof. By Taylor's formula

f \k
n+& f (x)=\k

n
&x+ f $(x)+\k

n
&x+

2

\1
2

f "(x)+' \k
n

&x++ ,

where ' is bounded and limt � 0 '(t)=0. Then,

An ( f )(x)& f (x) } An (1)(x)= f $(x)(An (id)(x)&x } An (1)(x))

+
1
2

f "(x) An ((id&x } 1)2)(x)

+ :
n

k=0

:n, k xk(1&x)n&k \k
n

&x+
2

' \k
n

&x+ .

Arguing as in [12, p. 22] and using the inequality |:n, k |�M( n
k), it

follows

lim
n � �

n } :
n

k=0

:n, k xk(1&x)n&k \k
n

&x+
2

' \k
n

&x+ }=0

(uniformly in x # [0, 1] if f # C2([0, 1])).

Therefore, by Lemma 3.1(ii) and Lemma 3.2, we obtain

lim
n � �

n(An ( f )(x)& f (x) } An (1)(x))

= 1
2x(1&x) f "(x) w(x)+x(1&x) f $(x) w$(x).

The last part follows at the same manner by using the uniform con-
vergence properties in Lemma 3.1(ii) and Lemma 3.2. K
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Remark. 1. If f # C([0, 1]) is two times differentiable at x # ]0, 1[, we
can write the Voronovskaja-type formula in the following form

lim
n � �

n(An ( f )(x)&w(x) } f (x))

= 1
2x(1&x) w(x) f "(x)+x(1&x) w$(x) f $(x). (3.5)

Indeed, this follows by inequality (3.2) and by

lim sup
n � �

n | f (x)| |An (1)(x)&w(x)|

�| f (x)| lim sup
n � �

nr(n)(xn+(1&x)n)=0

for every x # ]0, 1[.
Moreover, we have limn � � n(An ( f )(x)&w(x) } f (x))=0 at the

endpoints if r(n)=o(1�n).

2. In the case of Bernstein operators, we have w=1 and therefore
(3.4) and (3.5) reduce to the classical Voronovskaja's formula (see, e.g.,
[12, p. 22]).

An expressive formulation of (3.4) can be obtained for positive sequences
(*n)n # N and (\n)n # N . In this case the function w is strictly positive in
]0, 1[ and therefore if f # C2([0, 1]),

lim
n � �

n(An ( f )(x)&An (1) } f (x))

={
1
2

x(1&x)
w(x)

d
dx

(w2(x) f $(x)), if 0<x<1,
(3.6)

0, if x=0, 1.

Moreover, if w>0 on [0, 1] (i.e., *�>0, \�>0), then the convergence
holds uniformly on [0, 1].

4. CONVERGENCE OF DERIVATIVES

In this brief section, we give some general results concerning the con-
vergence of derivatives of An ( f ) for a differentiable function f.

We observe that if f # C1([0, 1]) and m<n, then (see (1.8))

Lm, n ( f )(x)=x(1&x)m B� n&m&1( f )(x),
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where

B� n&m&1( f )(x) := :
n&m&1

k=0
\n&m&1

k + xk(1&x)n&m&1&k f \k+1
n + .

Consequently

(Lm, n ( f ))$=B� n&m&1( f )(x)
d

dx
(x(1&x)m)

+(n&m&1) x(1&x)m :
n&m&2

k=0
\n&m&2

k +
_xk(1&x)n&m&2&k \ f \k+2

n +& f \k+1
n ++

=B� n&m&1( f )(x)
d

dx
(x(1&x)m)+

n&m&1
n

x(1&x)m

_ :
n&m&2

k=0
\n&m&2

k + xk(1&x)n&m&2&k f $(!k), (4.1)

with (k+1)�n�!k�(k+2)�n. Using Lagrange's theorem and the uniform
continuity of f $ it is easy to see that

lim
n � �

(Lm, n ( f ))$ (x)=
d

dx
(x(1&x)m f (x)) uniformly on [0, 1].

The same argument can be iterated and applied also to the operators
Rm, n , Bl

n and Br
n (see (2.14) and (2.15)), so that we can state the following

result.

Proposition 4.1. For every f # Ck([0, 1]), we have

(i) lim
n � �

(Lm, n ( f ))(k) (x)=
d k

dxk (x(1&x)m f (x)) uniformly on [0, 1];

(ii) lim
n � �

(Rm, n ( f ))(k) (x)=
d k

dxk (xm(1&x) f (x)) uniformly on [0, 1];

(iii) lim
n � �

(Bl
n ( f ))(k) (x)=

d k

dxk ((1&x) f (x)) uniformly on [0, 1];

(iv) lim
n � �

(Br
n ( f ))(k) (x)=

d k

dxk (xf (x)) uniformly on [0, 1].
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Theorem 4.2. If f # C([0, 1]) admits a derivative of order k at a point
x # ]0, 1[, then the sequence ((An( f ))(k) (x))n # N converges to (dk�dxk)(w } f )(x).

Moreover, if f # Ck([0, 1]), then the convergence is uniform on every com-
pact subinterval [a, b]/]0, 1[.

Proof. For brevity, we consider only the case k=1 and assume first
f # C1([0, 1]). We can write

An= :
n

m=1

+m Lm, n+ :
n

m=1

_m Rm, n+*� Bl
n+\� Br

n ,

with +n :=*n&*� and _n :=\n&\� .
Now, we have

:
n

m=1

+m (Lm, n ( f ))$= :
&

m=1

+m (Lm, n ( f ))$+ :
n

m=&+1

+m (Lm, n ( f ))$. (1)

If x # ]0, 1[, by (4.1) we obtain |Lm, n ( f )$ (x)|�m(1&x)m&1 & f &+
x(1&x)m & f $& and hence, if [a, b]/]0, 1[,

sup
a�x�b } :

n

m=&+1

+m (Lm, n ( f ))$ (x) }�sup
m�&

|+m | \& f $&+
1
a2 & f &+

and therefore the second term in the right-hand side of (1) tends uniformly
to 0 on [a, b] as & � �.

If & is fixed, the first term converges uniformly to �&
m=1 +m (d�dx)

(x(1&x)m f (x)). If we put l� (x) :=��
m=1 +m x(1&x)m then

sup
a�x�b }

d
dx

(l� (x) f (x))& :
&

m=1

+m
d

dx
(x(1&x)m f (x)) }� 0 as & � �

and hence

lim
n � �

:
n

m=1

+m (Lm, n ( f ))$=
d

dx
(l� } f )

uniformly in [a, b]. By repeating the same argument we have

lim
n � �

:
n

m=1

_m (Rm, n ( f ))$=
d

dx
(r~ } f )

uniformly in [a, b], where r~ (x)=��
m=1 _m xm(1&x).
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Hence the second part of the result immediately follows, using Proposi-
tion 4.1, (iii) and (iv). The first part can be derived in a straightforward
manner (see, e.g., [12, pp. 26�27]).

Remark. In general, Theorem 4.2 is false at x=0 or x=1. For example,
if \m=0 and *m=1�m, then An (1)$ (x)=�n&1

m=1 (1�m)(1&x)m&1 does not
converge at x=0.

5. CONVERGENCE OF ITERATES

For arbitrary sequences (*n)n # N and (\n)n # N of real numbers, in general
we cannot ensure the convergence of the iterates of the operators An, n�1.
Here we study a case of particular interest which can be easily described.

We fix n�1 and study the behavior of the sequence (Ap
n)n # N , where as

usual A1
n=An and Ap+1

n =An b Ap
n for every p�1. Since An ( f )(0)=*n f (0)

and An ( f )(1)=\n f (1) (see (2.1)) we have, for every p�1,

Ap
n ( f )(0)=*p

n f (0), Ap
n ( f )(1)=\p

n f (1) (5.1)

and hence, the convergence of the sequence (Ap
n)n # N implies that

&1<*n�1, &1<\n�1. (5.2)

We assume &1<*m�1 and &1<\m�1 for every m=1, ...., n. By
(2.29) and (2.35) we have &1<bn�1 and consequently

0�|An | (1)�Bn ( |bn | )�Bn (1)=1.

Hence 0�|Ap
n |�Bn for every p�1 (we use the notation |An | ( f )=

|An ( f )| ). Moreover we observe that if *n=1 or \n=1 then &Ap
n&=1 for

every p�1.
We have the following result.

Proposition 5.1. Assume that &1<*m�1 and &1<\m�1 for every
m=1, ..., n. Then the sequence (Ap

n)p # N is strongly convergent.
Moreover

(1) lim
p � �

Ap
n ( f )=0 for every f # C([0, 1]) such that f (0)= f (1)=0.

(2) If *n<1 and \n<1, then (Ap
n)p # N converges strongly to 0.
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Proof. We observe that (1) holds for Bernstein operators (see, e.g., [5,
(2.5.5), p. 118]), so, if f # C([0, 1]) satisfies f (0)= f (1)=0, then by the
inequality

0�|Ap
n ( f )|�Bp

n ( | f | )

we deduce (1) in the general case.
Now, assume *n<1 and \n<1. Take 0<$�min[1&|*n | , 1&|\n |];

then, for every f # C([0, 1]), & f &�1, we easily obtain

0�|An | ( f )(x)�Bn (1)(x)&$(xn+(1&x)n)=1&$(xn+(1&x)n)

and hence &An&<1, from which (2) follows.
We have only to show the convergence of (Ap

n)n # N in the remaining case
max[*n , \n]=1. Since &Ap

n&=1 for every p�1, the spectral radius of An

is equal to 1. We prove that _(An) & D/[1], where, as usual, _(An)
denotes the spectrum of An and D is the closed unit disk in the plane.

For, let f # C([0, 1]) be such that An ( f )=ei% f, ei%{1. Then

An ( f )(0)=*n f (0)=ei% f (0) and An ( f )(1)=\n f (1)=ei% f (1),

from which f (0)= f (1)=0. Hence by property (1)

0= lim
p � �

Ap
n ( f )= lim

p � �
eip% f

and this yields f =0.
Hence, _(An) & D=[1] and 1 is a simple pole of the resolvent of An

because &An&=1. Applying [13, Proposition 3.5, p. 12], we complete the
proof. K

Under the assumptions of Proposition 5.1, the limit operator Pn :=
limp � � Ap

n is a projection on the eigenspace Ker(An&I) and commutes
with An . Furthermore Ker(An&I) is contained in the space Pn of all poly-
nomials with degree less or equal to n.

In particular, we have Pn ( f )=0 if f (0)= f (1)=0.
In the following result, we show that the dimension of Ker(An&I) is just

equal to the number of coefficients *n and \n which are equal to 1.

Proposition 5.2. (i) dim(Ker(An&I))=2 if both *n and \n are equal
to 1;

(ii) dim(Ker(An&I))=1 if only one of *n and \n is equal to 1.
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Proof. (i) Since Pn ( f )=0 if f vanishes at the points 0 and 1, then
Ker(An&I) is generated by Pn (1&id ) and Pn (id). But

Pn(1&id)(0)=1, Pn (1&id)(1)=0 and Pn (id)(0)=0, Pn (id)(1)=1

and hence the functions Pn (1&id) and Pn (id) are linearly independent.

(ii) Suppose, for instance, *n=1 and &1<\n<1. We show that
Pn ( f )=0 if f (0)=0. In fact by (5.1), Pn ( f )(1)=0 and hence Pn ( f ) vanishes
at both the points 0 and 1; by property (1) of Proposition 5.1, Pn ( f )=
Pn (Pn ( f ))=0. In particular Pn (id)=0 and therefore Ker(An&I) is
generated only by Pn (1&id) (which is non zero by (5.1) again). K

If we denote by PB :=limn � � Bp
n the limit projection of the iterates of the

nth Bernstein operator, we have (see, e.g., [5, (2.5.5), p. 118])

PB ( f )(x)=(1&x) f (0)+xf (1)

for every f # C([0, 1]) and x # [0, 1] and further |Pn |�PB .
In general the projection Pn has the following expression

Pn ( f )= f (0) Pn(1&id)+ f (1) Pn (id) (5.3)

for every f # C([0, 1]).
If both *n and \n are equal to 1, we observe that 0�|Pn | (1&id)�

PB (1&id)=1&id and 0�|Pn | (id)�PB (id)=id.
If *n=1 and \n=0 we have 0�|Pn | (1&id)�1 and Pn (id)=0.
Moreover, observe that if *m=\m for every m=1, ..., n, then

An (1&id)(1&x)=An (id)(x) and hence, in this case

Pn (1&id)(1&x)=Pn (id)(x)

Related problems concerning the convergence of the iterates are
considered in [9, Section 4]; however, even there the discussion is not
complete and some open problems are indicated.
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